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Abstract 

A practical generally applicable procedure for exponential 
modeling to maximum likelihood of macromolecular data 
sets constrained by a moderately large basis set of reliable 
phases and a molecular envelope is described, based on 
the computer program MICE [Bricogne & Gilmore (1990). 
Acta Cryst. A46, 284-297]. Procedures were first tested 
with simulated data sets. Exact and randomly perturbed 
amplitudes and phases were generated, together with a 
known envelope for solvent-free protein and for protein 
in an electron-dense crystal mother liquor typical of many 
real protein crystals. These experiments established useful 
guidelines and values for various parameters. Tests with 
basis sets chosen from the largest amplitudes indicate that 
exponential models with considerable correct extrapolated 
phase and amplitude information can be constructed from 
as few as 16% of the total number of reflections, with 
mean phase errors of about 30 ° , at resolution limits 
of either 5 or 3 A. When the shape of the solvent 
channels in macromolecular crystals is known, it offers 
an important additional source of information. MICE was, 
therefore, adapted to average the density outside the 
molecular boundary defined by an input envelope. This 
flattening process imposes a uniform density distribution 
in solvent-filled channels as an additional constraint on 
the exponential model and is analogous to the treatment 
of solvent in conventional solvent flattening. Experimental 
data for cytidine deaminase, a structure recently solved by 
making extensive use of conventional solvent flattening, 
provides an example of the performance of maximum- 
entropy methods in a real situation and a compelling 
comparison of this method to standard procedures. Ex- 
ponential models of the electron density constrained by 
the most reliable phases obtained by multiple isomor- 
phous replacement with anomalous scattering (MIRAS) 
(figure of merit > 0.7, representing 34% of the total 
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number of reflections) and by the envelope give rise to 
centroid electron-density maps which are quantitatively 
superior by numerous statistical criteria to conventionally 
solvent-flattened density. Similarity of these maps to the 
2Fobs - Fcalc map calculated with phases obtained after 
crystallographic refinement of the model implies that 
maximum-entropy extrapolation provides better phases for 
the remaining 66% of the reflections than the original 
centroid MIRAS distributions. Importantly, the solvent- 
flattened electron density, although it did permit interpre- 
tation of the map which was not readily accomplished 
with the MIRAS map, contains substantial errors. It is 
proposed that errors of this sort may account for previ- 
ously noted deficiencies of the solvent-flattening method 
[Fenderson, Herriott & Adman (1990). J. Appl. Cryst. 23, 
115-131] and for the occasional tendency of incorrect 
interpretations to be 'locked in' by crystallographic re- 
finement [Briind6n & Jones (1990). Nature (London), 343, 
687-689, and references cited therein]. Solvent flattening 
with combined maximization of entropy and likelihood 
represents a phase-refinement path independent of atomic 
models, using the experimental amplitudes and the most 
reliable phases. It should, therefore, become a valuable 
and generally useful procedure in macromolecular crystal 
structure determination. 

1. Introduction 

Exponential modeling and likelihood maximization are 
computer algorithms for applying maximum-entropy and 
Bayesian inference methods to the phase problem in 
X-ray crystallography (Bricogne, 1988b, 1992). Their 
effectiveness in ab initio phase determination has 
been demonstrated in successful applications involving 
small-molecule and especially powder crystal structures 
(Gilmore, Bricogne & Bannister, 1990; Bricogne, 1991; 
Gilmore, K. Henderson & Bricogne, 1991) and in electron 
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microscopy (Dong et al., 1992). Likelihood ranking has 
been shown to be a powerful discriminator of phase 
sets generated by traditional direct-methods algorithms 
for small protein data sets (Gilmore, A. N. Henderson 
& Bricogne, 1991). There are compelling arguments 
for believing that the greatest utility of these methods 
may lie in macromolecular crystal structure determination 
(Bricogne, 1988a, 1993). Yet, despite these successes 
and expectations, they have not yet proved to be of 
practical value when applied jointly to protein crystal 
structures. There are several possible reasons. At best these 
methods are only beginning to be understood by practising 
crystallographers. At worst, they are misunderstood and/or 
viewed in unrealistic ways, so their great promise has 
engendered high expectations that have not, as yet, been 
realized in practice. Although the foundations for these 
algorithms were established nearly a decade ago, they have 
remained intimidating from a mathematical standpoint 
and their intuitive rationalization (Bricogne, 1988b) has 
not been widely appreciated. Finally, development and 
distribution of a user-friendly computer program from 
that originally described for use with small molecules 
(Bricogne & Gilmore, 1990) has been slowed by a 
lack of experience with handling the unique aspects of 
macromolecular data sets. Consequently, the widespread 
interest in the methods is often accompanied by skepticism 
regarding their value. 

Much of the misunderstanding surrounding these meth- 
ods stems from a preoccupation with the long-range goal 
of ab initio phase determination (Sj61in, Prince, Svensson 
& Gilliland, 1991), which remains exceedingly difficult. A 
brief and perceptive analysis of this preoccupation is given 
by Lemarechal & Navaza (1991). The theoretical justifi- 
cations for the methods are not limited to the ab initio 
problem, however, and they provide considerable motiva- 
tion to utilize the methods in ways appropriate for dealing 
with familiar problems in macromolecular structure de- 
termination. It is therefore important to clarify intuitively 
what combined entropy and likelihood maximization en- 
tails, what the methods can and cannot do, and to explore 
their effectiveness in conventional contexts. Here we ad- 
dress ourselves to these goals with a brief review of the 
theory and a description of computational procedures, fol- 
lowed by a summary of results. 

2. Review of theory 

Although the theoretical foundations for the work 
described herein have been presented in previous publica- 
tions (Bricogne, 1984, 1988a, b), and although these pro- 
vided conclusive validation for previous anticipation of a 
possible role for information theory in the X-ray phase 
problem (Bricogne, 1982; Narayan & Nityananda, 1982; 
Britten & Collins, 1982; Wilkins, Varghese & Lehmann, 
1983; Piro, 1983), it is useful to restate some of the key 
ideas in less mathematical terms, in order to facilitate a 
better understanding of how and why the methods work, 

and to lay a foundation for the computational algorithms 
and results which are presented later. 

2.1. Partially phased structures and conditional 
probability 

Statistical approaches to the phase problem in crystal- 
lography (known as 'direct methods') are based on the idea 
of a probability distribution describing where atoms might 
be located in the (as yet unknown) structure contained 
in the crystallographic unit cell. A probable distribution 
of atomic positions is something like an electron-density 
map, with probabilities, not electron densities, at each 
pixel. Initially, this distribution is assumed to be uniform 
because we know nothing about where the atoms are. The 
probable distribution of atomic positions changes, how- 
ever, as phases and other aspects of the crystal structure 
become known. Owing to the mathematical relation be- 
tween atomic positions and structure factors, any knowl- 
edge about one of these changes the probable distributions 
of the other. Thus, as phases become known, the proba- 
ble distribution of atomic positions changes and so, too, 
does the probable distribution of the remaining phases. 
When enough known phase information has accumulated 
the probable distribution of the remaining phases becomes 
so sharp as to actually determine their values with great 
accuracy, and the crystal structure is solved. 

A brief illustration is useful. The uniform distribution, 
which has a constant value everywhere, is the safest as- 
sumption if there is no information regarding the atomic 
positions. However, once X-ray data have been collected, 
we are no longer totally ignorant about the distribution of 
atomic positions, and the uniform distribution no longer 
applies. Knowing the experimental data, one can usually 
choose phases for at least two or three strong reflections, 
to fix the origin of the unit cell. Doing so changes the 
atomic probability distribution law irreversibly; suddenly 
some regions of the unit cell are more likely than others 
to contain atoms. The new probability distribution is said 
to be conditional, in the sense that it is valid only if given 
the specific phase choices that have already been made. 
Associated with this is also a new conditional probability 
distribution for the remaining unknown phases. 

What are these new conditional distributions of atomic 
positions and phases? The problem of choosing new dis- 
tribution laws for the random atomic positions and un- 
known phases, once some of the reflections are phased, 
is the quintessence of the phase problem in crystallog- 
raphy. One approximation to the probable distribution of 
atomic positions is the Fourier synthesis calculated from 
the structure factors of the phased reflections. As a prob- 
ability distribution, this map is not very realistic: it may 
have regions of very high probability, matched with re- 
gions with 'negative' probability, an ill-defined concept. 
It is also a bad approximation because the missing reflec- 
tions all have amplitudes of zero, whereas one has actually 
measured them to be non-zero. Thus, the Fourier transform 
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of any small subset of phased reflections, by itself, is never 
a good guess regarding the distribution of atomic positions 
conditional on these phase assumptions. 

The two defects in the Fourier transform of phased re- 
flections are closely connected, because we can modulate 
the peaks and eliminate the holes of the map if, and only if, 
we introduce reasonable estimates for the phases and am- 
plitudes of the missing reflections. Clearly, the probable 
distribution of atomic positions and the electron-density 
map converge to very similar functions when the struc- 
ture is solved. However, even with refined high-resolution 
structures, significant numbers of reflections may not have 
been included in the data set. So, one way or another, 
making optimal estimates for the conditional distribution 
of atomic positions can contribute to a structure solution 
in different ways, depending on how much phase infor- 
mation is available. Various contexts are summarized in 
Table 1. 

subject to the constraints in l HI. The maximum-entropy 
distribution restricts where atoms may be located only to 
the extent implied by the amplitudes and phase choices in 
{H}. Therefore it will optimally modulate the undesirable 
features of peakiness and negativity associated with the 
electron-density map. Concomitantly, as noted above, it 
will also make the best possible estimates for amplitudes 
and phases in {K}, given those in {H}. Far from being an 
arcane transplant from statistical mechanics, the concept 
of a constrained maximum-entropy distribution is highly 
intuitive in the context of conditional probability. It offers 
no more nor less than the shrewdest statistical guesses 
about reflections in {K} permitted by the current phase 
choices represented by the constraints, {U~}. The corre- 
sponding conditional probability distribution of structure 
factors in K is then given by a multivariate Gaussian dis- 
tribution centered around the distribution of extrapolated 
structure-factor values. 

2.2. The basis set and maximum-entropy extrapolation 
We can divide the X-ray data into two parts - a basis 

set of phased reflections, I H 1, and the complementary set, 
I KI,  for which phases are unknown. Given any basis set, 
I HI,  choosing an appropriate probability distribution for 
the atomic positions is equivalent to choosing amplitudes 
and phases for the reflections I K}, outside the basis set, 
to modulate the defects in the simple Fourier transform 
of I HI. The resulting conditional probability distributions 
for the phases in I KI are obtained by a weighting pro- 
cedure that compares the estimated amplitudes with their 
corresponding observed values. This amounts to extrapo- 
lating phase information from reflections in {HI to those 
with unknown phases in {K}. 

2.3. Exponential modeling 
So far we have not described any specific algorithms for 

providing either the most-probable distribution of atoms 
or the centroid phases in I K}. This problem has been 
recognized and discussed by many authors (Hauptman & 
Karle, 1953; Luzzati, 1955; Klug, 1958). A comprehensive 
description is given by Bricogne (1984), who provided a 
non-trivial proof that the desired conditional distribution 
of atoms can be approximated uniquely by means of a 
mathematical device called the saddlepoint (SP) method. 
This approximation involves constructing an exponential 
model for the distribution of atoms, 

qME(x) = exp ~ (hexp(-27rix.sh) (1) 
hEH 

whose Fourier transform, I uME }, matches the amplitudes 
and phases of reflections in I H } (Collins, 1982). Construc- 
tion of this model can be carded out by a process called 
'exponential modeling', described below. It results in a 
map, qME(x), that has maximum entropy, S = - ~ - 1  qilogqi, 

2.4. The global log-likelihood gain criterion 
The pivotal element of the exponential model is thus 

that its Fourier transform provides estimates for struc- 
ture factors beyond the basis set, in the complementary 
set {K}. Useful estimates for the conditional probability 
distributions associated with these extrapolated structure 
factors can be constructed with a multivariate Gaussian 
centered around the vector of structure factors, [ uME I, and 
whose covariance matrix is approximated by a diagonal 
matrix with elements, 1]N(eh), where eh are the statistical 
weights for the space group. These conditional distribu- 
tions can be integrated over the unknown phases to pro- 
duce the conditional marginal probability distributions of 
the directly observable structure-factor amplitudes, {I Ukl}. 
There are slightly different expressions for acentric and 
centric reflections. In terms of unitary structure factors, U 

P~g(I Ukl Uit=UH) 
= (2Nlek)lUklexp[-(Nlek)(IUkl 2 + IukMEI2)] 

× lo[(2N/:k)lUkl Iu~tEI], (2) 

for an acentric reflection k and 

P~g(IUkl I UH=U~) 
= (2N/Trek)l/2exp[-(N/2ek)(IUkl 2 + I u~tEI2)] 

× cosh[(g/ek)lUkl IUk~Sl], 

for a centric reflection k. 
Since the amplitudes {IUkll are known from exper- 

imental measurements, these expressions can be evalu- 
ated quantitatively and used to compare them with those 
obtained from maximum-entropy extrapolation. The loga- 
rithm of the ratio between these probabilities and the cor- 
responding expressions for the Wilson distribution based 
on the hypothesis of a uniform distribution of atomic 
positions, given by pS&g(IUklIUn -- 0), is called the log- 
likelihood gain (Bricogne, 1988b) 
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Size of the basis set 
Uses for exponential modeling 
Uses for likelihood 

Role in phase determination 
Crystal structure status 

Table 1. Representative methods o f  structure solution 

Small basis set Mode ra t e  basis set 
{H}~{K} {H}z:{K} 

Tree-directed search for new phases Density modification to improve maps 
Good figure of merit for different nodes Indicator for convergence 

Ab initio phase determination Refinement of experimental phases 
Unsolved May be solved 

Large basis set 
{H}-~{K} 

Super-resolution of maps 
Not applicable - too few F,,~, for reflections 

in {K} 
Phase extension? 

Solved 

L(U K) = ~ {loglo[(2N/~k)lU~bsllUkMEl] - N/EkIUkMEI2 } 
kEN 

k acentric 

L(U ~) = ~ llogcosh[(N/~k)IU~,b~llUkMr'l] 
kEK 

k centric 

- N/2eklUkMEI 2 }. (3) 

Summing over all reflections gives the global log- 
likelihood gain. This function is called a log-likelihood 
gain because it measures how much the probability of 
the data (the observed structure-factor amplitudes for 
reflections in {K l) has been enhanced by choosing the 
current phases in {H}. Those familiar with the Sire 
probability distribution for structure factors obtained for 
a portion of the atoms in the unit cell (Sire, 1959) 
may recognize the first term of the summands in the 
argument of the Sim weighting factor, with U~ r'~ replacing 
b v ~ a .  Qualitatively, this function increases as the quan- 
titative agreement between the observed and extrapolated 
structure-factor amplitudes improves. 

2.5. Centroid maps 
The maximum-entropy distribution, qME(X), is not, 

strictly speaking, an electron-density map. Minimum vari- 
ance estimates for the electron density itself are obtained 
from qME(x) by analogy with the arguments of Blow & 
Crick (1959) and also Bricogne & Gilmore (1990). Cen- 
troid estimates for the structure factors in {K I, involving 
the observed amplitudes together with Sire-like weights, 
are obtained from the first moment of the conditional prob- 
ability distributions: 

(i) for k acentfic 

( Uk) = IU~bSl[ll(Xk)/lo(Xk)]exp(i~aE) 

with 

Xk = (2N/ek)lUfb~l lU~'ml 

(ii) for k centric 

(Uk) = Iu~bsltanh(Xk)exp(iqo~lE) 

with 

Xk -- (N/~k)IU~b~I IU~EI. 

Fourier synthesis with these structure factors then gives 
a 'centroid' electron-density map analogous to the classi- 
cal centroid map from multiple isomorphous replacement 
phasing. 

Finally, the likelihood, (3), is a very sensitive criterion 
for the correctness of the constraint phases used to con- 
struct qME(x) (Bricogne, 1984). This has two important 
consequences for the phase problem. Firstly, as demon- 
strated by Gilmore, A. N. Henderson & Bricogne (1991) 
the likelihood is a very good discriminator between ex- 
ponential models based on different phase sets. As a re- 
sult, it can be used effectively in tree-directed searches for 
ab initio phases, as is done for small molecules (Woolf- 
son, 1980). Secondly, since the likelihood statistic tends 
to assume a maximum for the correct basis-set phases, it 
provides a way to refine the basis-set phases. 

To summarize, expressions (1)-(3) offer a novel and 
very powerful addition to existing methods for solving 
crystal structures. Table 1 shows three different represen- 
tative situations, from ab initio phasing to high-resolution 
phase extension. It is known that the phase problem is 
usually generously over-determined, and that the unknown 
phases are coupled mathematically to the observed ampli- 
tudes (Sayre, 1952b; Bricogne, 1974; Rothbauer, 1980). 
The real strength of exponential modeling and likelihood 
methods is that they exploit the phase information con- 
tained in these complex coupling patterns. The likelihood 
(3) serves to evaluate quantitatively how well the exponen- 
tial model predicts amplitudes in {K}, and hence the cor- 
rectness of the basis-set phases. Bricogne has reviewed the 
contexts in which these two devices may be useful, includ- 
ing a comprehensive plan for ab initio phasing (Bricogne, 
1988a, 1993). 

2.6. Relevance of  statistical direct methods to macro- 
molecular crystallography 

Although the long-term goal of ab initio phase deter- 
mination is appealing, construction of a maximum-entropy 
exponential model (1) from a set of known phases is of 
more immediate importance to protein crystallography. 
Since it represents the optimal way to couple reliable 
knowledge about reflections in {H} to the set of reflec- 
tions for which phases are less certain, it should provide 
a way to insure that the phases used to solve a structure 
are as consistent as possible with the observed amplitude 
data, i.e. that the best possible phases are used. Since the 
relations that couple amplitudes and phases arise from con- 
ditional probability, they depend explicitly on the quality 
of the known phases, and hence on the size and accu- 
racy of the basis set. It therefore makes sense to explore 
their use first in contexts involving a considerable founda- 
tion of reliable phase information. Several aspects of pro- 
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tein crystal structure determination and refinement suggest 
that these methods should be very beneficial, for example, 
with problems suggested in the second colunm of Table 
1, where the primary phase determination has produced 
phases sufficient to solve the structure, but where existing 
refinement methods are weak: 

(i) Numerous structure solutions rely heavily on density- 
modification methods to improve the poor quality of iso- 
morphous replacement phases (Podjarny, Bhat & Zwick, 
1987). The most popular method involves 'solvent flatten- 
ing' (Wang, 1985), a procedure that repeatedly strives to 
eliminate features of density outside the molecular bound- 
ary where the density should be uniform and, thereby, 
correct errors within the boundary caused by poor quality 
phases. This process is inefficient, especially so if the start- 
ing isomorphous replacement phases are of poor quality 
(Fenderson, Herriott & Adman, 1990). Moreover, solvent- 
flattened maps invariably appear 'improved' in a subjec- 
tive sense. But as noted in §4, we have found recently 
that conventional solvent flattening can introduce signifi- 
cant errors into the flattened map. 

(ii) When the available phase information is insufficient 
to solve a structure, even with extensive solvent flatten- 
ing, the added phasing power afforded by the amplitudes 
themselves could provide the difference between solving 
these structures and not solving them at all. 

(iii) Occasionally, and perhaps more frequently than 
is realized, errors are made interpreting electron-density 
maps which are never corrected by subsequent refinement 
(Br/ind6n & Jones, 1990, and references cited therein; 
Backes et al., 1991). Crystallographic refinement of atomic 
models against the data affords little protection against 
such errors (Howard, Lorsbach, Ghosh, Melis & Stout, 
1983; Stout, Turley, Sieker & Jensen, 1988; Stout, 1988) 
because statistical phase indications are intrinsically multi- 
modal (Bricogne, 1984), and the model itself introduces 
such a strong bias that quite good R factors can be obtained 
with models corresponding to incorrect local minima. For 
this reason it is important to use the best possible map for 
the initial interpretation. 

Exponential modeling and likelihood maximization 
have important advantages in these situations: 

(i) Additional phase information comes from the am- 
plitudes for the native structure. These are normally the 
highest quality data involved in the phase determination. 

(ii) Native amplitudes have no systematic errors due to 
lack of isomorphism. 

(iii) Phasing power arising from the native amplitudes 
is model independent and unbiased. 

3. Computational procedures and X-ray data sets 

We have modified the computer program, MICE 
(Maximum entropy In a Crystallographic Environment; 
Bricogne & Gilmore, 1990) to work with protein data 
sets. MICE integrates exponential modeling and likelihood 
evaluation, and has been thoroughly tested with a vari- 

ety of X-ray data sets involving small-molecule structures 
(Bricogne & Gilmore, 1990; Gilmore, Bricogne & Ban- 
nister, 1990; Bricogne, 1991; Gilmore, A. N. Henderson 
& Bricogne, 1991; Gilmore, K. Henderson & Bricogne, 
1991; Dong et al., 1992). Our purpose here has been to 
enable MICE to work with larger data sets and, in particu- 
lar, to make use of a known molecular envelope and then 
to evaluate its performance in the conventional context of 
solvent flattening. 

3.1. Algorithms 

Algorithms for exponential modeling and log-likelihood 
calculation have previously been designed to implement 
formulas (1) and (3) (Bricogne & Gilmore, 1990). A brief 
description follows. 

3.1.1. Exponential modeling. The Fourier coefficients 
of the desired exponential model, I (n  }, are parameters, 
which must be built iteratively by fitting the model to the 
constraints, {Un}. The fitting process is illustrated in Fig. 
1. Each cycle begins with calculation of the exponential 
model based on the current parameters by Fourier transfor- 
mation of {(n}, followed by exponentiation of that map. 
This gives the current estimate for qME(x). Shifts to bring 
the exponential model into closer agreement with the con- 
straint values on the next cycle, { A ( n  }, are estimated from 
the difference Fourier coefficients by back transformation 
and map division. 

Convergence is achieved either when the entropy of 
successive iterations is stationary, or when the constraints 
are fitted to within a reduced X2-1ike statistic, C, equal to 
1.0. The C statistic is given by 

1 * 2  C = ~ ~ (IUh - Uhl )/(PChz~a + ~ )  
h E H  

h acent r ic  

1 * 2  + 5 ~ (IUh - Uhl )/(p~hz~c + erda), 
h E H  

h c e n t  ric 

where U~ is the constraint value from the phased { UgbS}, 
Uh is the current value, ~h is the usual statistical weight of 
reflection h, Sa and Zc are refinable variance parameters 
representing the reciprocal of the number of effective 
scatterers (see Bricogne & Gilmore, 1990, §§2.3.3 and 

FIT EXPONENTIATE NORMALIZE 
{~iH} >> e)i(X) > > > > > > > >  exp[tOl(x)] > > > > > > > > >  qi ME 

v 

^ v 
i FF'I"I W <= qsolv = <qsolv > 

v 
v 

l;i+lHI ~ I;ta + t.~;H - sK~l IIU MEI. @tEl 

qsolv = <qsolv > => i DIFFERENCE i 
(plane search) i FOURIER COEFFICmNTS v 

{At.; H} < < <  dqi/q I < < < < <  dq i (x )<<<<< {AU H =LPHbS -uME}  
Fl~r I DIVISION FIT 

BOLD FACE =--=--'> REALSPACE 
(X) . . . .  • MAPS 

NORMALFACE = ~ >  RECIPROCAL SPACE 
{ } ~ = >  FOURIER COEFFICIENTS 

Fig. 1. Exponential modeling. 
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2.4), and or{ is the (experimental) variance of Ug bs. An 
adjustable parameter, p, determines the relative weights 
given to the Z" variance parameters and the experimental 
cry. Softening the constraints in this manner helps to 
prevent overfitting of the model when the basis-set phases 
are incorrect. In practice, the best indicator of convergence 
seems to be a maximum in the log-likelihood gain, and 
adjustment of the p parameter is often necessary either to 
soften or tighten the constraints according to the ability 
of the exponential model to fit the lUg bs } while still 
increasing the likelihood. 

3.1.2. The plane search. The current iterate of the model 
can be moved into better agreement with the constraints 
by a large variety of different shifts, with varying impact 
on the entropy. The shifts actually used are calculated 
from the I A(~} after an algorithm, known as the plane 
search, is used to find the best compromise between the 
constraint and entropy-search directions (the parameters t 
and s; Bricogne & Gilmore, 1990). In the plane search, a 
decision is first made regarding the appropriate force of 
the constraints - how closely the Fourier transform of the 
exponential model should agree with the constraints after 
the next iteration. The parameter s then subtracts a portion 
of the current [ (n  ] in order to flatten the map and increase 
its entropy. The behavior of the exponential model over a 
patch of the (s,t) plane surface is approximated by a bicu- 
bic function, which is then contoured at the targeted level 
of the constraint value to determine the s and t parameters 
giving maximum entropy (Bricogne & Gilmore, 1990). 

In the process of building the parameters of the expo- 
nential model (the ( 's)  terms of the Fourier series for the 
electron density outside the basis set are built up in a statis- 
tically meaningful way, via {U ME } until, at convergence, 
there is a set of extrapolated values for the phases and am- 
plitudes of reflections outside the basis set. This process of 
extrapolation is central to the use of exponential modeling 
in the determination and refinement of phases. 

3.2. Adaptations for protein data sets 

MICE has been modified for work with protein data 
sets. The necessary modifications included minor changes 
in array dimensions and inclusion of new functions for 
inputting a molecular envelope and using it to reset the 
solvent regions to their average value. 

Array sizes in MICE were, for the most part, designed 
for small molecules at very high resolution; protein data 
sets require larger arrays, because the number of observed 
data is very much larger than for small molecules. Also of 
importance is the size of maps calculated by Fourier trans- 
formation. For small-molecule problems MICE is gener- 
ally run with maps in space group P1, sampled at 0.2 
/k intervals, or less. Since the size varies as the cube of 
the linear dimension of the unit cell, this resolution can- 
not be used for protein data sets on current computers. 
Aliasing errors can occur if the maps are not sufficiently 
finely sampled (Shannon, 1949; Sayre, 1952a), and we 

have, therefore, studied this possibility in order to deter- 
mine the best compromise between resolution and alias- 
ing. We have looked for several kinds of indicators that 
might suggest aliasing problems: substantial extrapolation 
beyond the second neighborhood of the basis set, lack of 
agreement between P1 structure factors related by space- 
group symmetry, and the overall appearance of centroid 
maps. We have found no evidence of this problem work- 
ing close to the Shannon limit at three times the effective 
resolution of the data. This means that working with a 
3.0/k data set requires Fourier transforms be carded out 
on maps sampled only at 1.0 /k intervals. This size is 
quite manageable with current RISC architecture worksta- 
tions, and it permits useful improvements in many protein 
electron-density maps. 

Protein data sets do, however, present several unique 
problems that had to be addressed before these methods 
could be applied directly. Preparation of the structure- 
factor amplitudes required a special scaling treatment to 
estimate the F000, and the MICE program had to be modi- 
fied to utilize a molecular envelope in an effective manner. 

3.2.1. Data preparation. Normally, structure-factor am- 
plitudes are prepared for use in direct-methods programs 
by a process known as normalization, in which the 
Lorentz- and polarization-corrected intensities are put on 
absolute scale, (optionally) sharpened with an overall tem- 
perature factor, and then sharpened again by division by 
the mean-square amplitude in shells of resolution (Rogers, 
1980). The resulting normalized structure-factor ampli- 
tudes, representing the root-mean-square deviation from 
the mean, or variance, of the scattering amplitudes, are 
taken to represent the amplitudes from a structure of point 
atoms at rest. The advantage of using normalized structure 
factors is considered to be that they simplify expressions 
of the reciprocal space marginal joint probability distribu- 
tions for crystals with heterogeneous atomic composition 
by isolating the trigonometric part of the structure-factor 
expression. The utility of normalization in estimating real- 
space approximations to non-uniform joint probability dis- 
tributions has been questioned (Bricogne, 1988a; Bricogne 
& Gilmore, 1990), and it has been pointed out that in 
these cases normalization is both ineffectual in dealing 
with heterogeneous populations of atoms and unnecessary 
if the heterogeneity can be represented by a multichannel 
maximum-entropy approach (Bricogne, 1988a). The large 
solvent channels present in protein crystals represent an 
important source of such heterogeneity, and they alter 
the distribution of amplitudes significantly at low reso- 
lution, thereby posing difficulties with the estimation of 
normalized structure factors from the measured ampli- 
tudes (Harker, 1953; Carter, Crumley, Coleman, Hage & 
Bricogne, 1990). For these reasons, [El values are not used 
in this work. 

MICE uses unitary structure factors, {UI~], where I Uhl 
-~ [FgbSl/Fooo and Uooo is equal to 1.0. Under these circum- 
stances, only one scaling parameter needs to be applied to 
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IFgbsl, namely, the IF00ol -l on the same scale as the data. 
Use of an appropriate scale factor is important, since scale 
factors that are either too large or too small will adversely 
affect the fitting process. These difficulties can be visual- 
ized with the aid of a simple one-dimensional illustration 
(Fig. 2). For unitary structure factors on the correct scale, 
the fitted exponential model will have a minimum value 
equal to (or slightly greater than) 0.0 (Fig. 2a). If they are 
too small, then addition of U000 = 1.0 will increase this 
minimum value, decreasing the dynamic range of qME and 
its Fourier transform (Fig. 2b). Fitting of the I r a}  will 
cease prematurely in this case, with weakened extrapo- 
lation into the set I UK 1, because the reduced dynamic 
range of the constraining Fourier coefficients implies too 
smooth a distribution to be fitted. Alternatively, if the scale 
factor is too high, then the initial Fourier map will have 
excessively large negative regions (Fig. 2c), contradict- 
ing the assumption of a positive distribution of atoms. 
Truncation of these negative regions during exponential 
modeling will corrupt the shape of the distribution to be 
fitted. Fitting will terminate prematurely with a decrease 
in log-likelihood gain, this time because the exponential 
model cannot reproduce the constraint structure factors, 
and maximum-entropy extrapolation is incorrect. 

In either case, the correct scale constant should lead to 
a higher likelihood than scale constants that are either too 
small or too large. We have, therefore, developed a rapid 
search procedure, as suggested by Bricogne (1988a), us- 
ing the log-likelihood gain on the first cycle of exponential 
modeling to search for the absolute scale (and hence the 
U000) that gives maximum likelihood. This procedure is 
far from rigorous, because it does not pursue each trial 
exponential model to maximum likelihood. Nevertheless, 
we have carded out numerous tests without finding excep- 
tional cases where the first cycle of exponential modeling 
did not turn out to be a good indicator of the ultimate like- 
lihood maximum. This approach has worked quite well 
for the cytidine deaminase experiments described below, 
where Wilson scaling was used first to find the approxi- 
mate absolute scale of the data. 

3.2.2 Use of the molecular envelope. When the shape 
of the solvent channels is known, it offers an important 
additional source of information. The usefulness of this 
information was previously investigated by Prince, Sj61in 
& Alenljung (1988). That work utilized exact data and 
a known envelope, much as we describe in our initial 
model studies, but should not be confused with the present 
work as they maximized the entropy of maps after con- 
ventional solvent flattening by fitting the entire (Fobs - 
Fcalc) data sets exactly, whereas we have found that use 
of maximum likelihood as a stopping criterion is essen- 
tial to prevent overfitting of imperfectly phased structure- 
factor data. Anecdotal reference is made to work with 
experimental data, but details of these extensions appear 
not to have been published. Incorporation of information 
about the envelope as a constraint in the process of expo- 
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Fig. 2. Difficulties associated with incorrect choices for the F00o term 
used in calculating unitary structure factors. If the tmitary structure- 
factor amplitudes in the constraint reflections are too small relative to 
IU0001 -- 1.0 (a), the minimum value of the distribution q(x) will be 
greater than 0.0, the constraints will be too soft, and the fitting process 
will cease before it has the opportunity for strong maximum-entropy 
extrapolation. For the correct scale (b), q(x) achieves its minimum 
value nearly at 0.0, and the extrapolation at maximum likelihood is 
as strong as possible. If the unitary structure-factor amplitudes in the 
constraint reflections are too large relative to [U0001 = 1.0 (c), q(x) 
will have negative values. In this case, tnmcation of the distribution 
in constructing the exponential model will distort its true shape and, as 
the constraints are fitted the maximum-entropy extrapolation will be 
incorrect. The log-likelihood gain in case (b) should therefore always 
exceed that for either case (a) or (b). 
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Table 2. Exponential modeling of  kallikrein 

The basis set, {H}, consis ted o f  the 237 out  o f  3163 reflections with the largest ampl i tudes  to 5 A resolution.  The correla t ion coefficients are calculated using 
a 5 A target m a p  which is a fast Four ier  t rans form of  3163 reflections with correct  phases  within 5 A. L(H) - L(0) is the global log-l ikelihood gain defined in 
§2.4; S is the map  entropy;  R~,~ and R,,,, are the (unsealed) crysta l lographic  R factors  for basis-set and ext rapola ted  reflections, respectively; and CC(qme)  
and CC(cent)  are the Fisher  corre la t ion coefficients for the q~e dis t r ibut ion and  centroid  maps ,  respectively, as defined in §3.3, with the target map.  
Max imum likelihood is indicated by bold type here and in Tables 3 and 5. 

p Cycle No. L(H) - L(0) S Rb .... P~,r N .... CC(qme)  CC(cent)  
0.5 I 171 0.0197 0.713 0.820 1422 0.766 

3 196 0.0192 0.703 0.817 1554 0.768 
5 222 0.0043 0.687 0.814 1707 0.771 
7 239 0.0027 0.676 0.811 1801 0.772 
9 252 - 0.0012 0.667 0.808 1878 0.773 
I 1 267 - 0.0024 0.658 0.806 1953 0.774 
13 279 - 0.0041 0.650 0.804 2016 0.775 
15 292 - 0.0055 0.640 0.802 2102 0.776 
17 309 - 0.0068 0.631 0.800 2172 0.777 
19 323 - 0.0088 0.622 0.798 2243 0.778 
21 336 - 0.0108 0.613 0.796 2300 0.779 
23 350 - 0.0127 0.604 0.795 2369 0.780 
25 360 - 0.0175 0.598 0.793 2407 0.781 
27 368 - 0.0181 0.594 0.792 2445 0.78 I 
29 381 - 0.0197 0.587 0.791 2486 0.782 

0.1 31 389 - 0.0213 0.580 0.791 2550 0.782 
33 397 - 0.0230 0.574 0.790 2607 0.783 
35 414 - 0.0393 0.563 0.789 2716 0.784 
37 429 - 0.0422 0.550 0.787 2818 0.785 0.801 
39 428 - 0.0422 0.551 0.787 2813 0.785 

nential modeling was anticipated in the version of MICE 
described in Bricogne & Gilmore (1990), but the uniform 
distribution of the solvent atoms had not been exploited. 
One way to incorporate this information is to use two 
different 'channels' in which the initial distributions of 
atoms have different properties (Bricogne, 1988a). MICE 
does not implement multichannel maximum-entropy algo- 
rithms. It can, however, make use of a prior distribution 
of atoms, in this case represented by the envelope map. 
This distribution, re(x), is used as originally described 
[Bricogne, 1984, §3.3.1 (ME1)] in construction of the ex- 
ponential model. 

For data sets involving solvent-free protein atoms, 
{FPROTI, this procedure is adequate; there is only one 
type of atom (the protein atom) and it is found only where 
re(x) assumes non-zero values. The presence of electron- 
dense solvent regions increases considerably the difficulty 
of constructing optimal exponential models. For real data 
sets where the solvent regions are electron dense, but are 
occupied by atoms with very high temperature factors, the 
multiplicative m(x) filter provided in MICE is unable to ac- 
commodate the qualitatively different behavior of the two 
types of atoms present in the crystal. A correct statistical 
description of the joint distribution of structure factors re- 
quires the multichannel formalism (Bricogne, 1988a), in 
which the protein and the solvent atomic positions have 
separate probability distributions, updated by means of 
separate exponential models. 

In this work we chose to implement an approximation 
to this formalism. Its basis is hinted by the remark (in 
§2.3 of Bricogne, 1988a) that, because the scattering fac- 
tors of the two types of atoms intervene multiplicatively 
in the exponents of their separate exponential models, the 
rapid fall-off of the scattering factors of the solvent atoms 
will keep their distribution fiat and featureless, forcing 

the high-resolution detail to appear exclusively within the 
macromolecular envelope. A fully fledged implementation 
of this approach would provide a statistical technique for 
enforcing solvent flatness in advance, which would be use- 
ful for ab initio phase generation. Since here, however, 
we were interested primarily in phase extension and re- 
finement from a substantial amount of prior phase infor- 
mation we settled for an approximation in which solvent 
flatness outside the envelope is imposed after the calcula- 
tion of qME before calculating /_/VtE, and for each of the 
four trial maps used by the plane-search algorithm to es- 
timate structure-factor shifts on each cycle of iteration as 
indicated on the fight- and left-hand sides of Fig. 1, re- 
spectively. 

3.3. Data analysis and interpretation 
We used several statistical criteria, together with sub- 

jective evaluations of electron-density maps to monitor 
the behavior of exponential modeling, maximum-entropy 
extrapolation, and the consequent modification of the cen- 
troid electron-density maps. The overall strategy was to 
use simulated exact data first, to establish that various 
indicators work as expected, then to compare their be- 
havior with perfect and noisy simulated data to estimate 
roughly the radius of convergence for useful improve- 
ments in maps based on experimental data. MICE provides 
four useful statistics that need to be considered together: 

(i) The relative log-likelihood gain (3) for the exponen- 
tial model itself should increase. 

(ii) This increase in likelihood should be achieved with- 
out unduly decreasing the entropy. 

(iii) The likelihood should ideally continue to increase 
until the constraints are fitted to within the variance of 
the experimental data. This is reflected in the value of the 
reduced X 2 statistic, C. 
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(iv) Crystallographic R factors, R --- (E~=011u~bsl - 
IU~II)IE~.olU~b~I are calculated for both basis-set and 
extrapolated reflections at maximum likelihood, without 
scaling U t'bs and U ME. They reflect the ability of expo- 
nential modeling to fit the constraints without decreasing 
the likelihood. Although these statistics are similar to con- 
ventional R factors, the I Ugb~t and I u~EI are not scaled 
together, and hence they are almost meaningless by them- 

selves. They are quite useful when taken in the context of 
the behavior of the log-likelihood gain, where they pro- 
vide a valuable indication of how tightly the constraints 
can be imposed on the exponential model without causing 
the log-likelihood gain to plummet. 

These statistics indicate the behavior of the exponential 
modeling, and for example, the likelihood gain proves to 
be a better indicator of convergence than either the entropy 
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Fig. 3. Comparison of  (a) initial, (b) 
centroid and (c) target maps for 5 
,/~ exponential modeling with sim- 
ulated data for protein surrounded 
by an electron-dense solvent, with 
random phase errors averaging 30 ° . 
The basis set consisted of  approxi- 
mately 16% of  the reflections in the 
data set. A six section composite 
of  each map has been contoured at 
1.8o" and the target map is superim- 
posed on the correct structure. 
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shift or C. We monitor the likelihood closely, stopping 
the fitting at maximum likelihood, and then examine the 
other statistics. 

To evaluate quantitatively the performance of expo- 
nential modeling as a density-modification algorithm, we 
have compared the centroid maps at maximum likelihood 
(Bricogne & Gilmore, 1990, §1.6) with other maps us- 
ing the Fisher correlation coefficient over the two discrete 
electron-density vectors, p(x) and ~r(y) (Read, 1986): 

M 

Rxy = I~ - " ]  [ p ( X i ) -  (p(X)>][o'(Yi)- ( o r ( } " ) ) ]  } /  
i = 1  

M 
I ~--~ [ p ( X i )  - ( p ( X ) ) 1 2 [ o ' ( Y i )  - (o ' (Y) )1211/2 .  

i = 1  

Depending on the context, we have compared the cen- 
troid map to the starting (simulated or MIRAS phases), 
solvent-flattened maps, and to the final target maps calcu- 
lated with the entire set of known correct phases and am- 
plitudes or with coefficients [(21Fobsl - IFc~lcl)exp(i~calc)]. 
Comparisons are also made between the mean phase er- 

rors, (A~)  for different maps. Phase errors were evaluated 
with respect to structure factors calculated for the refined 
model of cytidine deaminase, with solvent contributions 
included as described in §3.4 for the simulated data sets. 
In both cases (Rxy and (A~p)) we look for the exponential 
model to introduce features into the Fourier transform of 
111 ] that bring it into better agreement with the target map. 

3.4. X-ray data sets 

The full potential of entropy maximization and likeli- 
hood ranking will probably be realized by stepwise ap- 
plication to problems of increasing difficulty. We have 
decided to focus initially on situations where considerable 
phase information is already available from other sources, 
that is with moderately sized basis sets (Table 1). In these 
cases it is likely that the methods will work, we can evalu- 
ate readily whether or not they do work and they are most 
likely to have immediate practical utility. We have care- 
fully selected two protein data sets for use in the prelim- 
inary characterization and testing of MICE. Briefly, these 
data sets are: 
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Fig. 4. Maximum-likelihood determination of the scaling parameter, IF000[, for converting IFh°bS I to IUh°b~l. The log-likelihood gain and ratio of the 
total IUh°bSl to the total IUh~Cl are plotted against the absolute scaling parameter for exact simulated data in (a) and (b), and against the scale 
factor relative to that derived from a Wilson plot for the experimental data for cytidine deaminase in (c) and (d), respectively. 
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(i) A simulated data set assembled from coordinates 
for a known structure taken from the database. The pro- 
tein coordinates selected for these simulations were those 
of kallikrein (Bode et al., 1983). This crystal form has a 
typical solvent content of about 55 %, and was considered 
representative of most protein crystals, and found not to 
present an unusually favorable geometric redundancy from 
large solvent regions. Calculated structure factors, includ- 
ing F000, based on refined coordinates were generated by 
Fourier transformation of electron densities, on an absolute 
scale, for the protein in the absence of solvent, I FPR°a'}; 
the envelope function, I G}; and the internal fluctuations 
of the protein density around its mean value, I A }, subject 
tothe defining relationship F PR°a" = G + A, as described 
elsewhere (Carter, Crmnley, Coleman, Hage & Bricogne, 
1990, § 1.1). Simulated {Fobs} structure factors and phases 
representing a real experiment were obtained by setting 
the electron density outside the molecular boundary to 
0.40 e A -3, equivalent to about 75 % saturated ammonium 
sulfate. The molecular boundary in the electron-density 
map simulated for solvent-free protein was chosen to in- 
clude a mean protein electron density of 0.418 e A -3. In 
the immediate neighborhood of the protein, the density 
was smoothed by a simple seven-point pixel averaging 
procedure, constrained to satisfy the analytical relation- 
ship that the electron density of the unit cell was equal 
to the sum of the contents of the protein region and the 
region volume, p(V) = p[x(U)] + p[x (V-  U)] (Carter, 
Crumley, Coleman, Hage & Bricogne, 1990). Either the 
amplitudes or the phases, or both were then varied ran- 
domly, to simulate noise. The maximum and mean phase 
errors introduced were 60 and 30 °, and the maximum am- 
plitude error was (Fobs) 1/2. 

(ii) Experimental [ Fobs, ~PMIRAS } data for E. coli cytidine 
deaminase, a structure recently solved and partially refined 
to 2.8 /~, (Betts & Carter, 1991; Betts, 1991), with an 
envelope determined during solvent flattening. 

4. Results 

We have tested MICE with the adaptations to accommo- 
date molecular envelopes as an alternative to using solvent 
flattening. Experiments with simulated data using calcu- 
lated structure factors for the solvent-free protein [ FPR°'I" 1, 
the solvated protein [Pbs], and the envelope I G] show 
that the process works well with protein data, that the 
likelihood is an excellent figure of merit for the correct 
basis-set phases, that the use of an envelope as an initial 
m(x) map aids considerably in convergence and in overall 
likelihood gain, and that structure factors I UK } generated 
by maximum-entropy extrapolation represent a consider- 
able amount of correct new phase information. These tri- 
als also defined reasonable limits for the requisite size 
and quality of the basis set. Experiments with our cyti- 
dine deaminase data show remarkable improvement over 
the solvent-flattened map. 

Table 3. Exponential modeling of cytidine deaminase 

M I R  p h a s e s  for  4174 ref lect ions to 3.2 A r e so lu t i on  wi th  an  M I R  t igure o f  

meri t  la rger  t h a n  0.7 were  selected for  the bas is  set f r o m  a total  o f  12093 

ref lect ions in the da t a  set. 

p Cycle No.  L (H)  - L(0) S Rb .... R .... N.x~r 

0.5 1 935 - 0.015 0.770 0.768 390 
3 123g - 0.036 0.734 0.746 652 
5 1555 -0.059 0.699 0.727 936 
7 1902 - 0.086 0.662 0.705 1289 
9 2280 - 0.118 0.625 0.681 1633 
11 2655 -0.158 0.589 0.659 2020 
13 3124 0.223 0.546 0.635 2468 
15 3568 0.275 0.506 0.612 2954 
17 4027 - 0.330 0.466 0.589 3431 
19 4436 -0.388 0.431 0.571 3879 

0.5 21 4799 0.461 0.402 0.554 4258 
23 "5128 --0.531 0.376 0.539 4584 
25 5332 - 0.586 0.361 0.530 4796 
27 5537 - 0.634 0.345 0.519 4969 
29 5743 - 0.684 0.329 0.510 5147 
32 5967 - 0.767 0.313 0.501 5361 
34 6070 - 0.836 0.305 0.495 5455 
36 6148 0.882 0.299 0.491 5528 
38 6214 - 0 . 9 3 5  0.294 0.487 5609 
40 6193 - 0.934 0.296 0.488 5593 

Table 4. Phase combination of cytidine deaminase 

Phase  c o m b i n a t i o n  s t a r t ed  wi th  4174 M I R  p h a s e s  o f  f igure o f  mer i t  -> 0.7; 

new c o m b i n e d  p h a s e s  were  used in the  next  ab initio e x p o n e n t i a l  mode l ing .  

No .  o f  ref lect ions (Phase  shif t )  (Old f .o .m. )  ( N e w  f .o .m. )  

M I R  p h a s e s  in c o n s t r a i n t s  

Basis set 4174 6.466 0.867 0.914 
Extrapolated 5870 31.808' 0.336 0.467 
Total 10044 21.276 0.557 0.653 

R e c o m b i n e d  phase s  in c o n s t r a i n t s  
Basis set 4174 8.029 0.867 0.920 
Extrapolated 5888 33.194 0.335 0.478 
Total 10062 22.755 0.556 0.661 

Table 5. Exponential modeling of cytidine deam&ase 
after phase recombination 

R e c o m b i n e d  p h a s e s  for  the s a m e  4174 ref lect ions used in T a b l e  2 were  used 

in the  bas is  set. 

p Cycle 
(1.5 I 

3 
5 
7 
9 
11 

No .  L (H)  - L(0) S Rb .... R~,,r Ncx,r 
979 - 0.009 0.762 0.774 386 

1313 0.036 0.722 0.750 676 
1679 0 . 0 6 0  0.682 0.726 1005 
2076 - 0.090 0.641 0.701 1375 
2519 - 0.123 (I.567 0.674 1795 
2995 -0.165 0.553 0.648 2253 

13 3480 - 0.213 0.509 0.624 2749 
15 4018 - 0.285 0.463 0.598 3318 
17 4523 - 0.346 0.420 0.576 3846 
19 5004 - 0.401 0.380 0.555 4300 
21 5405 0.462 0.348 0.536 4640 
23 5776 - 0.529 0.320 0.519 4950 
25 6051 0.580 0.300 0.508 5188 
27 6243 - 0.645 0.287 0.501 5351 
29 6387 -0.692 0.278 0.494 5458 
31 6507 - 0.729 0.270 0.489 5535 
33 6648 - 0.765 0.259 0.483 5632 
35 6722 - 0.816 0.255 0.480 5686 
37 6769 - 0.838 0.251 0.478 5729 
39 6722 --0.858 0.258 0.480 5698 

4.1. Ideal error free data 
Test experiments with exact data used the envelope 

map, m(x), as a non-uniform initial prejudice as originally 
described by Bricogne [1984, §3.3.1 (ME1)] in construct- 
ing the exponential model, qME. Under these conditions, 
MICE would reconstruct electron density essentially cor- 
rectly, working with a basis set of only 16% of the 
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strongest reflections to 3.0 ,/t resolution. These experi- 
ments constitute a 'positive control' or a 'best case ' ,  in 
the sense that structure-factor amplitudes ({Fi'ROTi for 
solvent-free protein) are maximal for reflections sensitive 
to the transform of the molecular envelope (Carter, Crmn- 
ley, Coleman, Hage & Bricogne, 1990), the F000 and ab- 
solute scale factor are known exactly, as is the envelope, 
which serves as a very strong constraint. Exponential mod- 
eling behaves according to expectation: 

(i) The likelihood continues to increase until X 2 = 

0.01, permitting almost arbitrarily strong imposition of  
the constraints. 

(ii) The R factor for basis-set reflections at maximum 
likelihood is about 0.038. 

(iii) The R factor for extrapolated reflections is 0.42. 
(iv) Correlation coefficients between the qr~m maps, the 

centroid maps, and the target map were calculated at each 
cycle, and they too reach maxima. The qUE map itself 

• ~ ! ~  :~ ~i~ 
• /  - :i / " 

(a) (b) 

'*'3 / 

(c) (d) 

Fig. 5. Density modification of the cytidine deaminase map, based on the initial MIRAS phases in the region surrounding Leu 57. The final 
solvent-flattened map (a) fails to differentiate the density of Leu 57 from that of a neighboring main-chain segment. Two successive maximum- 
likelihood eentroid maps, before (b) and after (c) phase recombination with the IR S phase probability distributions both strongly resemble 
the final 21Phil - I/~Cl map (d) after structure refinement. 



CONFERENCE PROCEEDINGS 205 

reaches a maximum correlation with the target map ear- 
lier than the centroid map, the log-likelihood gain, the R 
factors, or reduced X 2 reach their optima. For the qME 
map, this correlation coefficient is about 0.89, while for 
the centroid map it is 0.93, showing that the latter is, as 
expected, a better representation of the electron density 
than is qME itself. Both the maximum-entropy extrapola- 

tion and the ability to fit the constraints therefore continue 
to improve in parallel beyond the point at which the ex- 
ponential model reaches its maximum correlation with the 
target map. These results show that under ideal conditions 
the algorithms work exceedingly well. Maximum-entropy 
extrapolation predicts the amplitudes of 84% of the data 
to within an R factor of 0.42, quite an acceptable figure 

(a) (b) 

(c) (d) 

Fig. 6. Density modification of the cyfidine deaminase map, based on the initial MIRAS phases in the region containing Ala 62-Cys 63 and 
Gly 87-Asn 89. The final solvent-flattened map (a) is interrupted in the main-chain continuity for these two segments, one an a-helix on the 
left, the other a/7-sheet on the right. Two successive maximum-likelihood centroid maps, before (b) and after (c) phase recombination with the 
MIRAS phase probability distributions both show strong, continuous main-chain density in these regions and resemble the final 21Pb~l - l/~¢1 
map (d) after structure refinement. There is also improved density for the side chain of Phe 86 in the lower central region of the figure. 
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for structure-factor calculations from an unrefined model. 
Clearly, under these circumstances, the basis set is redun- 
dant, even at only 16% of the data. 

4.2. Simulated data with random errors 

Exponential modeling was next carried out in the same 
way using the same basis-set reflections, with exact am- 
plitudes, but with random phase errors averaging 30 °. A 
'starting map' calculated with only basis-set reflections 
had a correlation coefficient of 0.725 with the target map. 
A map calculated with all 3.0 A, reflections had a corre- 
lation coefficient of 0.83 with the target map, illustrating 
the effects of the 30 ° phase errors. The centroid map at 
maximum likelihood had a correlation coefficient of 0.88 
with the starting map, and 0.775 with the target map. Thus, 
with only 16% of the reflections and with random phase 
errors, the centroid map at maximum likelihood moved 
closer to the target map (0.725 ~ 0.775), while remain- 
ing faithful to the starting map. This phenomenon recurs 
in experiments using experimental data, demonstrating 
that exponential modeling is indeed a very conservative 
density-modification algorithm; in keeping with the crite- 
rion of maximum entropy, it moves only minimally away 
from the starting map. 

4.2.1. The log-likelihood gain is a maximum for the cor- 
rect basis-setphases. The maximum likelihood in this sec- 
ond case was lower by a factor of about five (1799 ver- 
sus 8338), and the constraints could only be satisfied to 
within an R factor of 0.37 for basis-set reflections and 
0.57 for extrapolated reflections. This is an encouraging 
demonstration of the fact that the likelihood is a maxi- 
mum for the correct phases, and showed that this proce- 
dure could be used to test phase-refinement algorithms. 
It also underscores the central contribution made by the 
maximum-likelihood criterion in preventing overfitting of 
the exponential model. 

4.2.2. Accuracy of maximum-entropy extrapolation. The 
accuracy of phase extrapolation was also encouraging. 
Distributions of phase errors for extrapolated centric and 
acentric reflections revealed that nearly 70% of the centric 
reflections were correctly extrapolated, while extrapolated 
acentric reflections had average, r.m.s, and U-weighted 
r.m.s, phase errors of 63, 80 and 59 °, respectively for all 
reflections with Sim weights > 0.1. This distribution in- 
cluded 9706 of the remaining 11 491 reflections to 3.0 tit. 
Electron-density maps based on the phases in the basis set, 
the centroid map and the target map show that the centroid 
map has a strong resemblance to the target map where the 
map based on the constraints alone is very poorly defined. 

4.3. Simulated data with solvent contrast matching 

Use of simulated amplitude data, representing the pro- 
tein embedded in a solvent of average density close to 
the mean value of protein, provided a more realistic test 
of the algorithms. A number of experiments were carded 
out using these data at different resolution limits, with dif- 

ferent choices of strong basis-set reflections, and making 
different uses of the molecular envelope. 

Exponential modeling under the constraint of solvent 
tlatness, described in §3.2.2, proved to work very well with 
both exact and noisy simulated data. A useful illustration 
of this performance is shown in Table 2. Here, a basis set 
of the strongest 237 of 3163 (7.5%) reflections to 5 A reso- 
lution, with random average phase errors of 30 ° , was used 
to build an exponential model using the solvent-averaging 
procedure. The log-likelihood gain indicates that despite 
the relatively small basis set, the extrapolation is quite 
strong. This is confirmed by the increase in the corre- 
lation coefficients between qME and centroid maps and 
the target map calculated with all the 5 A, reflections and 
the correct phases. Nearly all of the remaining reflections 
outside the basis set have significant extrapolation. Nev- 
ertheless, the exponential model itself leaves much to be 
desired. Although the entropy is high, the ability to fit the 
constraints is rather poor, as indicated by the R factor for 
basis-set reflections. Further fitting to the constraints re- 
suits in a dramatic decrease in the likelihood (not shown). 
This example is typical of what might be encountered in a 
low-resolution structure determination with weak isomor- 
phous replacement phase information. Fig. 3 presents a 
comparison of the starting, centroid and target maps for 
this experiment. 

4.4. Experimental data for cytidine deaminase 

Cytidine deaminase crystallizes with a monomer of 
about 30 kdalton in the asymmetric unit and a solvent 
volume about 70% of the unit cell. The crystal structure 
has been solved and refined at 2.8 A resolution using 
X-PLOR (Briinger, 1990) to an R factor of about 24% 
without individual atomic B factors or water molecules 
(Betts & Carter, 1991; Betts, 1991). Native intensities 
were measured using a multiwire area detector, and they 
are of high quality (Rmerge -- 5.0% for 12 348 reflections to 
2.8 A resolution). This problem is useful and interesting 
for at least three reasons: 

(i) The structure solution was based on a 3.2 A dou- 
ble isomorphous replacement phase determination with 
anomalous scattering, and involving extensive electron- 
density modification by means of the solvent-flattening 
algorithm of B. C. Wang and subsequently by the modified 
isomorphous pseudo-derivative procedure (Zelwer, 1988; 
Romanaora, Arnoux & Zelwer, 1991). Two heavy-atom 
derivatives were used in the phase determination, but they 
were very similar, having several sites in common. This 
situation was, therefore, scarcely more favorable than a 
single isomorphous replacement phase determination with 
anomalous scattering. Therefore, it provided a useful stan- 
dard against which to measure the performance of MICE 
as a density-improvement algorithm. 

(ii) The solvent-flattened map was difficult to interpret, 
and refined 2Fobs - Fcalc and Fobs - F~alc difference maps 
indicate that there are still areas where the model should 
be improved by rebuilding. These properties of the solu- 
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tion suggest that solvent flattening did not fully correct 
the MIRAS phase errors, and that there is room for im- 
provement in processes subsequent to the primary phase 
determination. 

(iii) Significant structural questions with unclear an- 
swers at the current state of refinement, might be an- 
swerable if a better set of experimental phases could be 
obtained. Among these is the configuration of a bound 
ligand, 5-fluoropyrimidine-2-one riboside. The electron- 
density map with the current set of phases is ambiguous 
about whether the pyrimidine ring is syn or anti, relative to 
the ribose. It may be possible, even at 2.8 A resolution, to 
resolve this ambiguity using omitted-fragment difference 
maps. Unfortunately, the best phases currently available 
are those of the model, which have a built-in bias. We are 
therefore interested in whether or not exponential model- 
ing can provide a better set of phases than those obtained 
from solvent flattening, and which could unambiguously 
settle this question. (We do not address this issue further 
here.) 

4.4.1. Preparation of unitary structure factors. Wilson 
scaling provided a good initial estimate for the scaling 
parameter, IF0001-1. In order to optimize this value for 
density modification, we carded out a series of studies 
varying the scale constant for the simulated data, and 
determining the behavior of the log-likelihood gain on 
the first cycle, and at convergence of the exponential 
modeling. We also observed that at the correct scale, the 
ratio Foscl = Y~HIUgb~II~U~.IIUhMEI ~-- 1.2, which provided 
an additional guide to the appropriate scale. 

These experiments, together with similar studies with 
the cytidine deaminase I IFgb~l] are illustrated in Fig. 4. 
Using MICE without making reference to the m(x) file, 
the scale of the input unitary structure factors was system- 
atically varied, and the log likelihood, the log-likelihood 
gain and the ratio Foscl were determined for the first cy- 
cle of an exponential modeling run constrained by the 
basis-set phases alone, with a uniform prior distribution 
for the random atomic positions, i.e. without imposing 
solvent flatness. For the simulated data, the points near 
the maximum were taken to maximum likelihood with 
subsequent cycles of exponential modeling. The ultimate 
maximum likelihood, as a function of the scale parameter, 
closely matched that observed for the first cycle. In the 
plots shown in Fig. 4, ranges within which the maximum 
log likelihood and, for the simulated data, the final max- 
imum likelihood were observed and hence the ranges of 
appropriate scale factors are indicated by vertical lines for 
the log-likelihood gain and for the ratio, Fo~l. For cytidine 
deaminase data the F000 term for converting I Ipb~l} am- 
plitudes to unitary structure factors was estimated initially 
from Wilson scaling and optimized by using one cycle of 
exponential modeling to estimate the log-likelihood gain 
for each of a series of values of the scaling factor. That 
factor which maximized this first cycle log-likelihood gain 
was then used throughout the subsequent procedures. 

4.4.2. Density modification by exponential modeling. 
Various other parameters for the cytidine deaminase data 
were chosen based on experience with the simulated data. 
It was clear that significant electron-density improvements 
were realized with constraints having a mean phase error 
of about 30 °. This error corresponds roughly to a mean 
figure of merit of 0.867. We used, therefore, a figure 
of merit threshold of 0.7 to select basis-set phases from 
the original cytidine deaminase MIRAS phases, having a 
mean figure of merit of 0.87. This afforded a basis set of 
4174 reflections to 3.2 /~ resolution, a somewhat larger 
fraction of the total number of reflections (12 348) than 
we had used with the simulated data. 

The envelope defined by the final round of solvent flat- 
tening was used as a mask for solvent averaging, resetting 
the density outside the envelope to its average value on 
each cycle of exponential modeling. Exponential model- 
ing under these circumstances has fulfilled or exceeded 
most of the expectations stated above (Tables 3-5): 

(i) The log-likelihood gain reached a value of 6214 after 
40 cycles of fitting. At this stage the R factor was 0.29 for 
basis-set reflections and 0.49 for extrapolated reflections. 

(ii) Throughout the electron-density maps (Figs. 5a, 
5b, 6a, 6b, 7a and 7b) there were regions where the 
centroid map was clearly superior to the solvent-flattened 
map, more nearly resembling the final 2Fob~ - F c a l c  map. 
Side-chain densities connected to neighboring main-chain 
density in the solvent-flattened map were clearly separated 
(Fig. 5). Regions where connectivity of the main chain 
was broken in the solvent-flattened map were clearly and 
correctly delineated in the centroid map (Fig. 6). Places 
with no side-chain density in the solvent-flattened map had 
developed appropriate density in the centroid map (Fig. 7). 

(iii) The centroid map obtained from exponential mod- 
eling is clearly superior to that obtained by solvent flat- 
tening with reference to the same envelope. 

4.5. Recombination of centroid phases from exponential 
modeling with MIRAS phases 

At this point, the Sim phase probability distribution 
from exponential modeling of cytidine deaminase was re- 
combined with the original MIRAS probability distribu- 
tion (Table 4). The mean figure of merit for all reflections 
rose from 0.55 to 0.66, and that for the basis-set reflec- 
tions had risen from 0.867 to 0.914. An even more sig- 
nificant improvement was observed for reflections outside 
the basis set, and for which MICE generated extrapolated 
phases. For these reflections, the mean figure of merit rose 
from 0.34 to 0.47. The mean phase changes in the recom- 
bined phases were 6.4 ° for basis-set reflections, 32 ° for 
extrapolated phases and 22 ° overall. Judging from the ex- 
periments with simulated data, these changes are largely 
made in the fight direction and represent improvements in 
the phases for most reflections. More exhaustive study will 
be required in order to determine whether the recombined 
phases are actually better than the centroid U ME phases 
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for reflections having poor MIRAS figures of merit. We 
are now investigating this question by rebuilding the cy- 
tidine deaminase model in conjunction with phase refine- 
ment and extension via phase permutation and likelihood 
evaluation. 

Recombined phases for the original basis-set reflections 
were input to a second refinement by MICE. The resulting 
centroid maps showed modest additional improvement, 

- . 

(Figs. 5c, 6c and 7c), even though they already strongly 
resembled the final 2Fobs- Fcalc map. New figures of 
merit for basis-set and extrapolated phases, together with 
the exponential modeling statistics indicated significant 
improvement in the basis-set phases: 

(i) Fitting the exponential model continued to improve 
the likelihood beyond the point at which the previous 
refinement had converged, as measured by the R factor 

(a) (b) 

(c) (,0 

Fig. 7. Density modification of the cytidine deaminase map based on the initial MIRAS phase in the region surrounding Tyr 126. The final solvent 
flattened map (a) fails to provide any density for the side chain of Tyr 126. Two successive maximum-likelihood centroid maps, before (b) and 
after (c) phase recombination with the MIRAS phase-probability distributions both indicate density in a region translated from the refined position 
of the side chain and resembling an extension of the density for this side chain in the final 2lb'°bs I - Ib'~alc[ map (d) after structure refinement. 
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between observed and ME structure-factor amplitudes at 
maximum likelihood (0.25 for basis set; 0.48 for extrap- 
olated reflections). 

(ii) Remarkably, this improvement in the fit of the expo- 
nential model at maximum likelihood is also accompanied 
by a modest increase in the entropy, from -0.94 to -0.85, 
even though the constraints were more strictly enforced, 
as indicated by the decrease in the crystallographic R 
factor. This suggests that in the neighborhood of the 
correct phases the entropy itself may be a useful secondary 
criterion. This importance of the entropy as a potential 
criterion for the correct phases was also apparent with the 
simulated data. 

(iii) Phase recombination continues to improve the basis 
set phases. Ongoing work shows that phase recombination 
also improves phases outside the basis set, suggesting that 
these too can be recruited into a new basis set. Thus, 
the whole calculation can be iterated, in a process that 
potentially could accurately determine all phases. This 
implies that all experimental electron-density maps should 
be amenable to considerable improvement by this process 
prior to model building. 

4.6. Comparison with cytidine deaminase results using 
traditional methods 

Solvent flattening in combination with exponential mod- 
eling to maximum likelihood has turned out to have im- 
portant advantages over traditional density-modification 
methods. Several aspects of the improvement in the cyti- 
dine deaminase maps are worth special emphasis. 

Centroid 

? 
MIRAS 

% 

Solvent-  

f l a t t ened  
T a r g e t  

2 F o  - F c  

Fig. 8. Global distances between the initial MIRAS, the target (2Fo - Fc), 
the centroid and the solvent-flattened maps. Distances are estimated 
as described in the text. The centroid map lies close to a direct path 
between the starting and target maps. 

4.6.1. The centroid cytidine deaminase map lies nearly 
on a direct path from the MIRAS map to the target map. 
The MIRAS map for cytidine deaminase has a corre- 
lation coefficient of 0.48 with the target 2Fobs- Fcalc. 
The centroid map after the first round of exponential 
modeling retains high correlation coefficients with both 
the MIRAS (0.68) and starting (0.78) maps, while having 
an improved correlation coefficient with the target map 
(0.69). In marked contrast, the solvent-flattened map, 
although it does improve the agreement with the target 
map (0.59), also shows a pronounced deviation from the 
MIRAS map (0.44). This deviation is reflected in the 
errors in connectivity and side-chain density illustrated 
in Figs. 5-7. The improvement in the centroid maps is 
not difficult to identify; it is dramatic. The centroid map 
obtained using only 35% of the data is superior to the 
final solvent-flattened map both subjectively and by every 
quantitative criterion after only one cycle of exponential 
modeling and without phase recombination. Subsequent 
phase recombination and reconstruction of the optimal 
exponential model produces additional improvements in 
the map; the correlation coefficient with the MIRAS map 
remains at 0.68, while that with the target map increases 
to 0.70. Maps (b) and (c) in Figs. 5-7 are both nearly 
indistinguishable from the target 2Fob~ - Fcalc map. 

Of particular relevance from the experiments with cy- 
tidine deaminase is that the centroid maps (Figs. 5b, 5c, 
6b, 6c, 7b and 7c) are comparatively free from the arti- 
facts introduced by solvent flattening. This phenomenon 
is a global feature of the maps themselves, as is illustrated 
in Fig. 8. Global distances, Dxy, between maps were esti- 
mated from the correlation coefficients, Rxy, via 

Dxy -- (1 - Rxy)/(1 - Rtarget.MIRAS). 

From this comparison it is evident that the centroid map 
based on the first exponential model lies more nearly on 
the direct path from the MIRAS map to the target 2Fob~ - 
Fcalc map, and that the solvent-flattened map interpreted to 
construct the atomic model represents a rather significant 
and essentially unpredictable excursion from both starting 
and target maps. This important phenomenon may help to 
explain why incorrect models (Br~ind6n & Jones, 1990) 
are occasionally built based on solvent-flattened maps. 

4.6.2. Maximum-entropy extrapolation is responsible for 
most of the map improvement. Conventional solvent fiat- 
tening and maximum-entropy solvent flattening both im- 
prove average phase errors. However, several interesting 
trends emerge from consideration of the distributions of 
phase errors in the two cases (Fig. 9). Maximum-entropy 
solvent flattening reduces phase errors significantly more 
than does conventional solvent flattening, particularly for 
strong reflections (Figs. 9b and 9d). Conventional solvent 
flattening seems to be particularly ineffective for low- 
resolution reflections (Figs. 9a and 9c), where maximum- 
entropy solvent flattening shows a major improvement. 
These trends are even more evident for reflections in {K} 
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(Figs. 9c and 9d). Hence, maximum-entropy phase exten- 
sion produces a more significant phase improvement for 
those reflections which are least well determined by iso- 
morphous replacement, and these reflections are the least 
improved by conventional solvent flattening. This may re- 
fleet the fact that conventional solvent flattening tends not 
to improve phases that are initially poor (Fenderson, Her- 
riott & Adman, 1990). Most of the improvement of the 
maps seen in Figs. 5-7 can be attributed therefore to the 
improvement in the phases of reflections in I K}, or those 
arising from maximum-entropy extrapolation. 

4.6.3. Maximum-entropy solvent flattening only requires 
reasonable computing resources. Exponential modeling to 
maximum likelihood with solvent averaging requires com- 
parable computing resources to those required for solvent 
flattening. A single cycle of fitting (resulting in Figs. 5b, 
6b and 7b) required only about 12 h of CPU time on a 
DEC station 5000/200. The method is entirely compatible 

with conventional phase combination, and may be iterated 
to convergence, involving re-definition of the envelope. It 
can therefore be used in exactly the same context as con- 
ventional solvent flattening. 

These algorithms are so effective for the following 
reasons. Both solvent-flattening algorithms remove peaks 
from the solvent regions that are considered to result 
from errors in the phases. Iteration by combining observed 
amplitudes with phases modified by recombination of 
MIRAS phases with those from the solvent-flattened map 
tends to restore scattering represented by the peaks re- 
moved from the solvent by introducing new density inside 
the envelope. Conventional solvent flattening gives no 
guidance whatsoever regarding where inside the envelope 
to put this new density. In contrast, construction of a 
constrained exponential model for the solvent-flattened 
density assures that new features inside the envelope are 
optimally consistent with the observed amplitudes and the 
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Fig. 9. Mean phase error distributions for MIRAS, conventionally solvent-flattened and centroid phases. (a) Overall mean phase error as a 
function of resolution. (b) Overall mean phase error as a function of IFo~l, on an arbitrary scale. (c) Mean phase errors for extrapolated 
reflections (reflections in {K}) as a function of resolution. (d) Mean phase errors for extrapolated reflections (reflections in {K}) as a function 
of ]Fo~]. Symbols for all plots: (open squares) MIRAS phase set, (filled triangles) solvent-flattening phase set and (filled squares) centroid 
phase set from maximum-entropy solvent flattening. 
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current phases in the basis set by maximizing the map 
entropy. In contrast, the errors in part (a) of Figs. 5-7 
are low-entropy features because there are relatively fewer 
ways to construct them consistently using the basis-set 
structure factors. They were introduced into the map by 
the unguided solvent-flattening procedure, as indicated by 
the lack of correlation between the solvent flattened map 
and the initial MIRAS map (0.44). 

4.7. Figures of merit 
Both the map entropy and the associated likelihood 

have been proposed as figures of merit on the correctness 
of basis-set phases (Bricogne, 1984, 1988a; Bricogne & 
Gilmore, 1990; Gilmore, Bricogne & Bannister, 1990; 
Gilmore, A. N. Henderson & Bricogne, 1991; Dong et 
al., 1992). Our experience so far provides compelling 
evidence regarding the value of the log-likelihood gain. 
The likelihood seems to be the best indication of both 
the convergence of the exponential modeling stages of 
refinement and the quality of the constraints, including the 
envelope as well as the basis-set phases. It is especially 
valuable in preventing overfitting of the data, as indicated 
by the fact that the constraints are fitted to varying degrees, 
depending on the quality of the constraints (the basis-set 
phases and the envelope). In the absence of such a criterion 
and without the envelope constraint, it is possible to fit 
the constraints exactly, since there are an equal number 
of parameters in the exponential model and observations 
contributing to the constraints. Overfitting in this fashion 
normally leads directly to catastrophic decreases in the 
global log-likelihood gain. 

The entropy is clearly also a useful indicator of the cor- 
rectness of the basis-set phases under certain conditions. 
In both experimental and model test situations, even small 
improvements in the basis-set phases lead to increases in 
the entropy at maximum likelihood. This suggests that the 
'Bayesian score', combining the log-likelihood gain with 
the entropy, should be an even more powerful figure of 
merit on the quality of the constraints (Bricogne, 1988a). 

R factors for basis-set and extrapolated reflections also 
provide very useful guides as to the overall quality of the 
constraints: as the basis-set phases improve, the exponen- 
tial modeling can be carded further - fitting more tightly 
to the constraints - as long as the likelihood continues to 
improve. The R factor at maximum likelihood also indi- 
cates the quality of the mask, so in situations where the 
mask is not known a priori, the ability to fit to the con- 
straints should also be an indicator of the correctness of 
the mask. 

Taken together, these statistics provide a rational and 
powerful measure of the quality of all sources of phase 
information. The ability to fit an exponential model to 
a set of constraints is, perhaps, the best all round char- 
acterization of those constraints. However, none of the 
individual statistics provides a complete characterization. 
The entropy itself is actually a rather weak discriminator, 

compared to the log-likelihood gain. Both entropy and log- 
likelihood gain are relative quantities, dependent on the 
contributors in the sets {H } and I K}, respectively. For 
this reason, they should be used only to compare compa- 
rable configurations of reflections. An example is provided 
by the comparison between Tables 3 and 5. The improve- 
ments seen in Table 5 represent significant improvements 
in the basis-set phases for cytidine deaminase, because the 
basis and complementary sets contained the same reflec- 
tions. The crystallographic R factors, on the other hand, 
reflect the absolute agreement between the observed am- 
plitudes and those from the Fourier transform of the ex- 
ponential model. As such, they are useful indicators of 
the overall progress of phase determination. For the pur- 
poses of calculations described here, the likelihood is most 
useful as a safeguard against over- or under-fitting to the 
current constraints. 

4.8. The minimum size and quality of  the basis set 
It is reasonable to ask what the practical limits are 

for application of this approach as a phase-determination 
or phase-extension procedure. In other words, how little 
phase information, and of what quality, must be provided 
to convert an uninterpretable MIRAS or SIR map into 
an interpretable one? The minimum size of the starting 
basis set is probably smaller than 30% of the total number 
of reflections. It is undoubtedly smaller if a molecular 
envelope can be determined from other sources. With 
respect to the question of phase accuracy in the basis 
set, an important practical conclusion from studies with 
cytidine deaminase is that phases with a figure of merit 
> 0.7 are close enough to the correct phases to be within 
the radius of convergence of the method to the correct 
structure, provided that an envelope is available. Since 
even rather poor SIR phase sets often generate phases with 
a figure of merit > 0.7 for 20-30% of the data set, this 
suggests that use of these procedures may bring a larger 
number of partially phased structures into range for full 
solutions. 

5. Summary 

We have shown that exponential modeling to maximum 
likelihood constrained by solvent flatness within a known 
molecular envelope is a superior way to improve isomor- 
phous replacement electron-density maps before model 
building. Tests with simulated data involving exact and 
noisy data provide useful examples of the capabilities of 
the algorithm, and an essential reference point for cali- 
brating its behavior with experimental data. The method 
is effective throughout the critical resolution range 5-3 A 
which includes most of the macromolecular crystal struc- 
ture determinations likely to benefit most from density 
modification. In the presence of a known molecular enve- 
lope, maximum-entropy phase extrapolation can generate 
significantly better phases, on average, than centroid MI- 
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RAS distributions for as many as 65% of the reflections 
to 3 A with figures of merit < 0.70. Perhaps most impor- 
tantly, exponential modeling is a phase extension and re- 
finement process that does not involve interpretation of the 
isomorphous-replacement-phased electron-density map, so 
it is model independent. It therefore should also mini- 
mize errors in an initial model, thereby preventing them 
from being 'locked in' by conventional automated refine- 
ment algorithms. The Sim-like conditional phase proba- 
bility distributions obtained from the maximum entropy 
and experimental structure-factor amplitudes can be re- 
combined with phase information available from other ex- 
perimental sources in a process that converges to a phase 
set that is also optimally consistent with the native ampli- 
tudes themselves. Hence, it will help make the best use 
of all experimental data relevant to phase determination 
before electron-density maps are interpreted. 
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